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Abstract. The modes of a strongly magnetized charged Bose gas are presented for ultra-low temperatures.
For longitudinal oscillations propagating parallel to the magnetic field the dispersion relation is found
to be dominated by the one-dimensional field-free plasmon dispersion relation as found by Alexandrov,
Beere and Kabanov recently in reference [1], while for propagation perpendicular to the magnetic field
they are found to be influenced by the cyclotron motion of the particles. Dispersion relations for these
modes known as Bernstein modes are given near the cyclotron frequency and its first two harmonics.
The dispersion relations for transverse modes in the system are then presented for the cases of photon
propagation perpendicular and parallel to the direction of the magnetic field.

PACS. 05.30.Jp Boson systems – 74.20.Mn Nonconventional mechanisms (spin fluctuations, polarons and
bipolarons, resonating valence bond model, anyon mechanism, marginal Fermi liquid, Luttinger liquid,
etc.) – 02.30.Gp Special functions

1 Introduction

Aside from the fact that the magnetized charged Bose
gas (CBG) is still an unsolved fundamental problem in
many body physics, the system has attracted much inter-
est lately because of its role in the bipolaron theory of
high temperature superconductivity [2,3]. Recently, the
dielectric properties of the CBG were presented in a weak
external magnetic field at T = 0 K where quantum ef-
fects dominate in the system [4]. In actual fact, these re-
sults were derived under the condition that |ωc/ωp| < 1,

where ωc (= eB/mc) and ωp (=
√

4πne2/m ) are, re-
spectively, the cyclotron and plasma frequencies. Thus,
not only are these results valid for a weakly magnetized
system, they are also valid for the strong magnetic field
case provided the plasma frequency is much greater than
the cyclotron frequency. For this latter case, one need not
be at T = 0 K, since the Bose distribution function at
sufficiently low temperatures can be approximated by its
T = 0 K form. Thus, the results in reference [4] can be
regarded as the high density limit low temperature regime
for the strongly magnetized CBG.

One of the most striking features of high temperature
superconductors is their high upper critical fields, which
appear to diverge as the temperature is lowered below
Tc. For example, measurements with overdoped Tl-Ba-Cu-
O [5] and Bi-Sr-Cu-O [6] have exposed the diverging na-
ture of Hc2(T ) from their Tc of approximately 20 K down
to millikelvin temperatures reaching values of 3 × 105 G
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(30 T) and 2 × 105 G, respectively. For the case of the
superconducting materials where Tc > 60 K, the situa-
tion is more difficult because not only are the Hc2 val-
ues higher, but the in-plane superconducting transition
is known to exhibit pronounced broadening in a mag-
netic field, with the top of the transition having a much
weaker field dependence than in the region near the bot-
tom [7–9]. Whilst it, therefore, has been difficult to de-
termine Hc2(T ) for these superconductors experimentally,
Alexandrov et al. [10] have proposed a method for extrap-
olating the values of the resistive upper critical field up to
Hc2 ≈ 2.3 × 106 G and T/Tc ≈ 0.35 based on their own
theory of Bose-Einstein condensation in a magnetic field
[11]. If electrons in these materials couple very strongly to
the lattice, then Bose particles in the form of bipolarons
can form. Thus it becomes necessary to study the CBG in
a strong magnetic field at low temperatures, but, unfortu-
nately, for the fields given above the cyclotron frequency is
considerably greater than the plasma frequency, thereby
rendering the results in reference [4] inapplicable.

The present paper aims to use a novel asymptotic ex-
pansion, first presented in reference [16], for the Kummer
function that appears in the various dielectric response
functions for the system, thereby enabling the evaluation
of the dispersion relation for longitudinal and transverse
modes for a CBG with |ωp/ωc| < 1. These properties
have remained elusive in the past because of the highly
anisotropic nature of the system. To evaluate these dis-
persion relations we shall use the T = 0 K form of the
Bose distribution function, which is valid for high Tc su-
perconductors provided the magnetic fields are high. In
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line with the opening paragraph of this paper, the regime
of |ωp/ωc| < 1 can also be regarded as the weakly mag-
netized ultra-low density limit, but for this situation, the
results presented here are restricted to extremely low tem-
peratures close to T = 0 K.

This paper is arranged as follows. In Section 2 the
dispersion relations for longitudinal or collective modes
are presented. Here not only is the dispersion relation for
plasmons presented, but also the dispersion relations for
Bernstein modes [12], which propagate perpendicular to
the direction of the magnetic field. Dispersion relations
for these modes near the cyclotron frequency and near its
first two harmonics are given in addition to the dispersion
relationship for the general anisotropic case. In Section 3
the dispersion relations corresponding to photon propaga-
tion perpendicular and parallel to the magnetic field are
presented. The results of this work are summarized in the
concluding section.

2 Collective modes

Realizing that the properties of a strongly magnetized
CBG have never been adequately evaluated, Alexandrov
et al. have recently sought to develop the theory of the
CBG in an ultrahigh magnetic field at ultracold tempera-
tures [1]. In this work they eventually obtained the plas-
mon dispersion relation of

ω2 =
h̄2q4

z

4m2
+
q2
z

q2
ω2

p e−γ(q⊥), (1)

where qz and q⊥ are respectively the components of the
wavenumber parallel and perpendicular to the magnetic
field arising from the anisotropy of the system and γ(q) =
h̄q2/2mωc. For q⊥ = 0 this reduces to the field-free Foldy
spectrum [13], which is consistent with the classical be-
havior that a strongly magnetized plasma behaves as if
it were a one-dimensional gas [14]. In the present work
a slightly more general form which reduces to equation
(1) for q⊥ = 0 and |ωc| → ∞ will be derived via the
random phase approximation (RPA) method as opposed
to the Bogoliubov de Gennes approach used by Alexan-
drov et al. While it is well-known that another longitudinal
mode with a frequency near the cyclotron frequency or a
harmonic of it can propagate principally in directions per-
pendicular to the magnetic field, i.e., qz ≈ 0, this mode
known as a Bernstein mode [12,14] cannot be derived from
equation (1), but can be derived via the RPA approach.

The longitudinal dielectric response function for arbi-
trary distribution function has been derived for the mag-
netized CBG via a self-consistent, second-quantized RPA
approach in references [15,16]. In the first of these refer-
ences, the conductivity tensor is evaluated while in the
second reference the polarization tensor is evaluated. The
advantage of the polarization tensor approach is that it
is independent of gauge and therefore, must satisfy sym-
metry properties such as charge conjugation and the On-
sager relation. The conductivity tensor derived from the

more elegant polarization tensor was found not to be iden-
tical to the result obtained by Hore and Frankel [15],
which lacked additional terms pertaining to the transverse
modes/properties of the magnetized CBG. Thus, although
Hore and Frankel were able to provide the correct form for
the longitudinal dielectric response of the system, they
would not have been able to carry out a correct study of
its transverse properties. In addition, while the longitu-
dinal dielectric response function was correct, they were
primarily interested in studying the weak field or high den-
sity limit rather than the strong field or low density limit.
Specifically, their study was applicable to |ωc/ωp| � 1,
whereas this paper is concerned with |ωc/ωp| > 1, which
represents a different asymptotic regime. The properties
of the magnetized CBG for |ωc/ωp| < 1 are addressed in
reference [4], where it is shown that many of the results
obtained by Hore and Frankel are, indeed, incorrect.

Introducing the T = 0 K distribution function into this
result yields

εL(qz, q⊥, ω) = 1 +
mω2

p

h̄q2

e−γ(q⊥)

ωc

×
[
S
( h̄q2

z/2m+ ω

ωc
, γ(q⊥)

)
+ S

( h̄q2
z/2m− ω

ωc
, γ(q⊥)

)]
,

(2)

where q2 = q2
z + q2

⊥. In equation (2) S(α, x) represents

S(α, x) =
∞∑
k=0

zk

(k + α) k!
· (3)

It should be noted that in equation (2), ωc has been as-
sumed to be positive, but if it is negative, then it should
be replaced by |ωc|, which is a consequence of the charge
conjugation property of the polarization tensor [16]. In ad-
dition, since all modes in the magnetized CBG at T = 0
K are zero-damped, the Landau prescription of replacing
ω by ω + iη [17] is not required here.

As mentioned above, in reference [10] Alexandrov et al.
have extrapolated the Hc2(T ) curve to 0.35Tc to obtain a
critical field of 230×104 G, which in turn yields a cyclotron
frequency of 8.5× 1013 rad s−1 for a 2e particle. For these
conditions γ(q⊥) is very small unless q⊥ is of the order of
106 cm−1. However, although ωc is large, ω/ωc need not
necessarily be small because it may be a Bernstein mode.
Therefore, to analyze the response functions for large ωc,
we require a small |x| expansion for S(α, x), that is general
for all values of α. Such a small |x| expansion has been
obtained in reference [18]. This expansion, which is more
accurate than just using the first few terms of the series
expansion for S(α, x) given by equation (3), is

S(α, x) ∼
1

α

+ x ex
∞∑
m=0

(−α)m
∞∑
k=0

Γ (k +m+ 2)

Γ (m+ 2)

ck(x)

(x+ 1)k+m+2
· (4)

The ck(x) in equation (4) are the same polynomials that
appear in the large |α| expansion for S(α, x) used to
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evaluate the dielectric properties in the weakly magne-
tized CBG [4].

Noting that S(α, x) is related to the incomplete gamma
function, Kowalenko and Taucher [19] have carried out a
detailed investigation of the large |α| expansion for the lat-
ter function in which several general expressions for the
coefficients of the ck(x) have been calculated. For exam-

ple, by denoting cjk as the coefficient of xj in each ck(x),
they found that

c1k = (−1)k/k!, (5)

and

c2k = (−1)k
(2k−1 − 1

k!
−

1

(k − 1)!

)
. (6)

Introducing these general expressions into equation (4)
yields the following small |x| expansion for S(α, x):

S(α, x) ∼ xex

[
3∑
k=1

xk−1

(k − 1)! f(x, k)

−
1∑
k=0

x
∂k

∂xk
1

f(x, 1)

−
x2

2

4∑
k=1

2k−1

(k − 1)!

∂k−1

∂xk−1

1

f(x, 1)
− x2 ∂

∂x

1

f(x, 2)

+ x2
3∑
k=1

1

(k − 1)!

∂k

∂xk
1

f(x, 1)
+O(x3)

]
+

1

α
, (7)

where f(x, k) = (x+ k)(x+ α+ k). If |x| � |α+ 1|, then
equation (7) can be expanded further to give the first few
terms in the power series expansion for S(α, x).

If equation (7) is introduced into equation (3), then
the longitudinal dielectric response function is given by
the asymptotic form of

εL(qz, q⊥, ω) ∼ 1 +
q2
z

q2

ω2
p exp(−γ(q⊥))

(h̄2q4
z/4m

2 − ω2)

+
q2
⊥

q2

ω2
p

(ω2
c (1 + γ(q))2 − ω2)

×

(
1− γ(q⊥) + γ(qz)

(1− γ(q⊥))

(1 + γ(q⊥))
+

γ(q⊥)γ(qz)

(1 + γ(q⊥))2

)

+
q2
⊥

q2

2ω2
p ω

2
c (1 + γ(q))2

(ω2
c (1 + γ(q))2 − ω2)2

γ(q⊥)

(1 + γ(q⊥))
+
q2
⊥

q2

×

(
1 +

γ(qz)

2 + γ(q⊥)

)
ω2

p γ(q⊥)

(ω2
c (2 + γ(q))2 − ω2)

+O
(
q6
⊥

)
. (8)

Equation (8) has been determined by considering only the
terms up to O(x2) in the asymptotic expansion given by
equation (7). That is, terms of O(x2) derived from equa-
tion (6) in the square-bracketed expression of equation (7)
have not been displayed. These will be used shortly for the

analysis of collective modes perpendicular to the magnetic
field. The dispersion relation for longitudinal modes is ob-
tained from εL(q, ω) = 0. In setting equation (8) equal to
zero, it can be seen immediately that the plasmon disper-
sion relation obtained by Alexandrov et al. in reference
[1], viz., equation (1) here, can only be obtained if q⊥ = 0,
although for this case the factor exp(−γ(q⊥)) in equation
(1) should be set equal to unity. Strictly speaking, the ex-
ponential factor should be expanded in powers of γ(q⊥)
since all the other terms in equation (8) have been ob-
tained under this condition. Thus, the dispersion relation
given by equation (1) corresponds to q⊥ = 0.

For the propagation of collective modes perpendicular
to or across the magnetic field (qz = 0), the longitudinal
dielectric response function reduces to

εL(q, ω) ∼ 1 +
(1− γ(q)− γ(q)2/2)ω2

p

ω2
c (1 + γ(q))2 − ω2

+
2γ(q)(1 + γ(q))ω2

p ω
2
c

(ω2
c (1 + γ(q))2 − ω2)2

+
γ(q)ω2

p

ω2
c (2 + γ(q))2 − ω2

+
γ(q)ω2

p ω
2
c/2

(ω2
c (3 + γ(q))2 − ω2)2

+
2γ(q)2(2 + γ(q))ω2

p ω
2
c

(ω2
c (2 + γ(q))2 − ω2)2

+
8γ(q)2(γ(q) + 1)3 ω2

p ω
6
c

(ω2
c (1 + γ(q))2 − ω2)4

−
4γ(q)2(1 + γ(q))ω2

p ω
4
c

(ω2
c (1 + γ(q))2 − ω2)3

, (9)

where the terms due to equation (6) in the asymptotic ex-
pansion for S(α, x) have now been included. If h̄q2/2mωc

or γ(q) is assumed to be small, i.e., much less than unity,
then the dispersion relation obtained after setting equa-
tion (9) equal to zero is

ω2 ≈ ω2
c (1 + γ(q))2 + ω2

p − 2γ(q)ω2
c

×

(
1 + ω2

p/2ω
2
c + ω4

p/6ω
4
c

1− 4γ(q)ω2
c/ω

2
p

)
+ · · · . (10)

Equation (10) has been evaluated by carrying out a per-
turbational analysis of solution to the dispersion relation
obtained by putting γ(q) equal to zero. For ωp � ωc, this
zero-damped longitudinal mode is close to the cyclotron
frequency and hence, represents a Bernstein mode [12].
On the other hand, putting ωc = 0 in equation (10) yields
the field-free Foldy spectrum [13] since the first couple
of terms in equation (7) appear in the expansion for the
weakly magnetized case [4].

For ω close to (2 + γ(q))ωc, one can obtain another
solution to the dispersion relation given by

ω2 ≈
(

2 + γ(q)
)2

ω2
c

+ ω2
p γ(q)

(
1 +

ω2
p

α0

(
1− γ(q)

)
−
h̄q2ω2

p ωc

mα2
0

)
+ . . . , (11)

where α0 = 3ω2
c + h̄q2ωc/m+ h̄q2ω2

p/2mωc. This solution
represents another zero-damped collective mode propagat-
ing across the magnetic field except on this occasion it
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is near a harmonic of the cyclotron frequency. Close to
(3+γ(q))ωc yet another zero-damped solution to the lon-
gitudinal dispersion relationship can be found, which is

ω2 ≈
(

3ωc +
h̄q2

2m

)2

+
h̄2q4ω2

p

8m2ω2
c

+
h̄2q4ω4

p

64m2ω4
c

+ · · · . (12)

Close to the n−1-th harmonic, we can use the preceding
material to conjecture that the longitudinal dielectric re-
sponse function is approximately

εL(q, ω)∼1 +
ω2

p

((γ(q) + 1)2ω2
c − ω

2)

+
γ(q)n−1 ω2

p

Λ(n− 1)((γ(q) + n)2ω2
c − ω

2)
, (13)

where Λ(n−1), which can only be determined by consider-
ing higher order terms in the asymptotic expansion given
by equation (7), is either equal to n − 1 or more likely
(n − 1)!. The solution to the dispersion relation close to
this harmonic is

ω2≈

(
nωc +

h̄q2

2m

)2

+
γ(q)n−1

Λ(n− 1)

(
1 +

ω2
p

(n2 − 1)ω2
c

)
+ · · · . (14)

So far, we have concentrated on the modes parallel and
perpendicular to the the magnetic field. We have seen that
plasmon modes propagate parallel to the magnetic field
while perpendicular to the field Bernstein modes propa-
gate, whose frequencies are dominated by the cyclotron
frequency or harmonics of it. It has also been seen as the
magnetic field is lowered that these modes merge into the
plasmon dispersion relation eventually yielding the field-
free Foldy spectrum [13].

We now consider the general anisotropic case where
both qz and q⊥ are not equal to zero. To first order in
h̄q2/mωc, i.e., for very strong magnetic fields, equation
(8) becomes

εL(qz, q⊥, ω) ≈ 1 +
q2
z

q2

ω2
p (1− h̄q2

⊥/2mωc)

(h̄2q4
z/4m

2 − ω2)

+
q2
⊥

q2

ω2
p (1 + h̄q2

z/2mωc − h̄q2
⊥/2mωc)

(ω2
c (1 + h̄q2/mωc)− ω2)

+
q2
⊥

q2

( h̄q2
⊥

mωc

) ω2
p ω

2
c

(ω2
c (1 + h̄q2/mωc)− ω2)2

+
q2
⊥

q2

( h̄q2
⊥

2mωc

) ω2
p

(4ω2
c(1 + h̄q2/2mωc)− ω2)

· (15)

By taking the h̄q2/mωc → 0 limit and then setting this
result equal to zero, one finds that the dispersion relation

for collective modes reduces to a quartic, whose solutions
are

ω2 =
1

2

(
ω2

p + ω2
c +

h̄2q4
z

4m2

±

√(
q2
zω

2
p

q2
+
h̄2q4

z

4m2
−
q2
⊥ω

2
p

q2
− ω2

c

)2

+ 4
q2
zq

2
⊥

q4
ω4

p

 .

(16)

For ω2
p � ω2

c , the two branches corresponding to the pos-
itive and negative square roots in equation (16) become

ω2 ≈ ω2
c +

q2
⊥ω

2
p

q2
+
q2
zq

2
⊥

q4

ω4
p

β ω2
c

+ · · · , (17)

and

ω2 ≈
q2
zω

2
p

q2
+
h̄2q4

z

4m2
−
q2
zq

2
⊥

q4

ω4
p

β ω2
c

+ · · · , (18)

where β = 1− γ(qz)
2. In the limit |ωp/ωc| → 0, equation

(18) reduces to the result obtained by Alexandrov et al.
[1], viz. equation (1). For ω2

p � ω2
c , equation (16) yields

ω2≈
1

2

(
ω2

p + ω2
c +

h̄2q4
z

4m2
± ω2

p

±

(
h̄2q4

z

4m2
− ω2

c

)(
q2
z − q

2
⊥

q2
+ · · ·

))
. (19)

The above results can now be used to carry out a per-
turbational analysis on the dispersion relation obtained by
setting the longitudinal response function given by equa-
tion (15) equal to zero. This yields a sextic polynomial,
two of whose roots represent perturbations of the above
results while the remaining solution is that obtained near
the first harmonic of the cyclotron frequency. We begin
with the solution near this first harmonic, which is only
valid provided q⊥ 6= 0. By concentrating on the denomi-
nator in the final term of equation (15), one obtains

ω2 =4ω2
c

(
1 +

h̄q2
⊥

2mωc

)
+ ω2

p

(
h̄q2
⊥

2mωc

)(
q2
⊥

q2

)(
1 +

ω2
p

4ω2
c

±
q2
⊥

3q2

ω2
p

4ω2
c

)

+ O

(( h̄q2

2mωc

)2
)
. (20)

It should be emphasised that in deriving equation (20) no
assumption other than γ(q)� 1 has been made. That is,
no assumption concerning the size of ωp to ωc has had to
be invoked.

From equation (16) it can be seen that taking the pos-
itive square root in equation (15) yields the branch near
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the cyclotron frequency. However, rather than deal with
the radical in equation (15), we shall consider perturba-
tions close to where the selected value for ω2 will yield
negative unity as the dominant term in the denominator
of the third term on the rhs of equation (15), namely,
ω2 = ω2

c (1 + h̄q2/mωc) + q2
⊥ω

2
p/q

2 + χ where χ is as-

sumed to be small and q2
⊥ω

2
p � q2ω2

c . We also need to
ensure that the next term in the longitudinal response
function is small for this branch, which in turn means that
|h̄q2/2mωc| � q2

⊥ω
2
p/q

2ω2
c . To ensure that the final term

is small, we must have |h̄q2
⊥/6mωc| � q2ω2

c/q
2
⊥ω

2
p. This

appears to contradict the condition for smallness of the
previous term, but in reality means that |h̄q2/mωc| must
be much smaller than the minimum of ω2

p/ω
2
c and ω2

c/ω
2
p.

Finally, to ensure that that the second term on the rhs of
equation (15) is small for these values of ω, we must have
q2
zω

2
p � q2ω2

c .
When these conditions are satisfied, one finds that the

dispersion relation near the cyclotron frequency becomes

ω2 ≈ ω2
c

(
1 +

h̄q2

mωc

)
+
q2
⊥ω

2
p

q2
+
q2
⊥q

2
z ω

4
p

q4 ω2
c

+
q2
⊥ ω

2
p

q2

×

(
h̄q2
z

2mωc
−

h̄q2
⊥

2mωc
−

(
h̄q2

mωc

)
ω2

c

ω2
p

)
+ · · · . (21)

The result given by equation (18) does not contain
all the first order terms from the longitudinal dielectric
response function, so we now consider ω2 = q2

zω
2
p/q

2 +

h̄2q4
z/4m

2 +χ, where χ is assumed to be small. To ensure
that the various terms appearing in equation (3) remain
small, we must take ω2

p � ω2
c again. Then, the dispersion

relation to first order becomes

ω2 ≈
q2
zω

2
p

q2

(
1−

h̄q2
⊥

2mωc
−
q2
⊥ω

2
p

q2ω2
c

)
+
h̄2q4

z

4m2
+ · · · , (22)

where it can be seen that the branch is zero for propa-
gation perpendicular to the magnetic field (qz = 0). Once
again, in the ultra-strong field limit of |ωc| → ∞, equation
(22) reduces to the result obtained by Alexandrov et al.
[1], which appears as equation (1) here.

3 Transverse modes

For photon propagation parallel to the magnetic field,
however, the transverse dielectric response functions are
conveniently described in terms of left and right circularly
polarized forms, which from reference [4] are given by

εl(q, ω) = 1−
ω2

p

ω2
−
ω2

p

ω2

(
ωc

ω − ωc − h̄q2/2m

)
, (23)

and

εr(q, ω) = 1−
ω2

p

ω2
+
ω2

p

ω2

(
ωc

ω + ωc + h̄q2/2m

)
. (24)

For |ω − ωc| � h̄q2/2m, these dielectric response func-
tions reduce to those for an electron plasma in the cold
plasma limit [14]. The dispersion relations for left and
right circularly polarized modes are obtained by setting
both equations equal to q2c2/ω2. The resulting equations
have been solved in the weak field limit in reference [4];
so here, we shall be concerned with the large ωc solutions
for the modes.

From the above the dispersion relations for circularly
polarized modes become

ω3 ± (ωc + h̄q2/2m)ω2 − (ω2
p + q2c2)ω

∓ωc q
2c2 ∓ (ω2

p + q2c2)h̄q2/2m = 0, (25)

where ‘+’ denotes right circularly polarized modes and ‘−’
left circularly polarized modes. For large |ωc|, the first two
terms on the lhs of both equations dominate and thus the
dispersion relations can be found by perturbing around
the solutions obtained when setting these terms equal to
zero. For left circularly polarized modes, one eventually
obtains

ω = ωc +
h̄q2

2m
+

ω2
p ωc

(ωc + h̄q2/2m)2
+ · · · , (26)

while for right circularly polarized modes, one obtains
the negative of this result. Thus for circularly polarized
modes there is only one dispersion relation that arises
in the vicinity of the fundamental of the cyclotron fre-
quency, which is unlike the situation for the collective
modes of the strongly magnetized CBG where dispersion
relations in the vicinity of harmonics of the cyclotron fre-
quency can also be obtained. Resonances for these modes
occur whenever equations (23, 24) yield infinities. Thus
for left circularly polarized modes a resonance occurs at
ω = ωc+h̄q2/2mwhile equation (24) possesses a resonance
at negative values of this frequency. Cut-off frequencies be-
low which photons will not propagate in the system are
determined by the solutions of

ω2
p

ω2
=
ω ± ωc ± h̄q2/2m

ω ± h̄q2/2m
, (27)

where ‘+’ applies to right circular polarized modes while
‘−’ applies to left circular polarized modes. For left circu-
larly polarized modes equation (27) yields

ω≈ωc + h̄q2/2m

+
ω2

p (ωc + h̄q2/2m)− h̄q2ω2
p/2m

(ωc + h̄q2/2m)2 − ω2
p

+ · · · . (28)

The dielectric response functions for photon propaga-
tion perpendicular to the magnetic field have been pre-
sented in terms of the Bose Kummer function in reference
[19], but in terms of S(α, x) they become

ε1(q, ω) = 1 +
ω2

p

2z∗ ω2
c

e−z∗

×
[
S (ω/ωc, z∗) + S (−ω/ωc, z∗)

]
, (29)
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ε2(q, ω) = 1−
2ω2

p

ω2

+
ω2

p e−z∗

2ω2z∗ω2
c

[
(z∗ωc + ω)2S (ω/ωc, z∗)

+ (z∗ωc − ω)2S (−ω/ωc, z∗)

]
, (30)

ε3(q, ω) = 1− ω2
p/ω

2 , (31)

and

εx(q, ω) =
ω2

p

2z∗ω2
c ω

e−z∗
[
(z∗ ωc + ω)S (ω/ωc, z∗)

− (z∗ ωc − ω)S (−ω/ωc, z∗)
]
, (32)

where z∗ = h̄q2/2mωc. The first three dielectric response
functions appear as diagonal components while the last
one is the sole off-diagonal component of the dielectric
tensor. The dispersion relation for the ordinary mode is
obtained by setting equation (8) equal to q2c2/ω2, which
yields ω2 = ω2

p + q2c2. Thus this mode is unaffected by
the magnetic field, which is identical to the situation for
a classical magnetoplasma in the cold plasma limit [14].
Unlike the classical magnetoplasma, however, ε2(q, ω) does
not reduce ε1(q, ω), whose origin can be traced back to the
diagonal components of equation (38) of reference [16].

If equation (7) is introduced into equations (29, 30, 32),
then the various dielectric response functions for photon
propagation perpendicular to the magnetic field become

ε1(q, ω) ∼ 1 +
ω2

p

ω2
c

[
(1− z∗)

D(z∗, 1, ω/ωc)
+

2z∗(z∗ + 1)

D(z∗, 1, ω/ωc)2

+
z∗

D(z∗, 2, ω/ωc)
+ · · ·

]
, (33)

ε2(q, ω) ∼ 1−
2ω2

p

ω2

(
1− e−z∗

)
+
ω2

p

ω2

[
1− 3z∗ + z∗/(z∗ + 1)

D(z∗, 1, ω/ωc)
+

2z∗
D(z∗, 2, ω/ωc)

+
z∗(z

2
∗ + 1)

(z∗ + 1)D(z∗, 1, ω/ωc)2
−

1− 3z∗ + z2
∗

z∗ + 1

+
z∗(z∗ − 1)

(z∗ + 1)2
+
z∗(z∗ − 2)

z∗ + 2
+ · · ·

]
, (34)

and

εx(q, ω) ∼
ω2

p

ω2
e−z∗

+
ω2

p

ω2
c

[
1− 2z∗ + z∗/(z∗ + 1)

(z∗ + 1)D(z∗, 1, ω/ωc)
+

2z∗
D(z∗, 1, ω/ωc)2

+
2z∗

(z∗ + 2)D(z∗, 2, ω/ωc)
+ · · ·

]
, (35)

where D(x, n, z) = (x + n)2 − z2. Strictly speaking, the
exponential factor of e−z∗ should be expanded in powers
of z∗, which is done from here on.

The dispersion relation for the extraordinary mode is
determined from

q2c2/ω2 = (ε1ε2 − ε
2
x)/ε1. (36)

To first order term in z∗ equation (13) becomes(
1 +

ω2
p

ω2
c

(
1− z∗

D(z∗, 1, ω/ωc)
+

2z∗
D(z∗, 1, ω/ωc)2

+
z∗

D(z∗, 2, ω/ωc)

))

×

(
1−

2z∗ω
2
p

ω2
−
q2c2

ω2
+
ω2

p

ω2
c

(
1− 3z∗

D(z∗, 1, ω/ωc)

+
4z∗

D(z∗, 2, ω/ωc)
+

2z∗
D(z∗, 1, ω/ωc)2

− 1 + 2z∗

))

=

(
ω2

p(1− z∗)

ω2
+
ω2

p

ω2
c

(
1− 2z∗

D(z∗, 1, ω/ωc)
+

z∗

D(z∗, 2, ω/ωc)

+
2z∗

D(z∗, 1, ω/ωc)2

))2

. (37)

This equation is best solved numerically, but since |z∗| is
very small, we can evaluate the dominant contributions to
the dispersion relations by studying the equation to zeroth
order in z∗. Before doing so, however, we need to deter-
mine the conditions under which the terms of non-zeroth
order in z∗ can be neglected. This is necessary because the
limit z∗ → 0 means that ωc → ∞ and some of the non-
zeroth order terms in z∗ in equation (37) contain powers
of ωc, e.g. the last term. To neglect these terms, one needs
to ensure that the denominators are large, which is valid
as long as ω is not close to the first harmonic of the cy-
clotron frequency. However, for |ωp/ωc| � 1 it is possible
to obtain a dispersion relation near the fundamental cy-
clotron frequency as found for circularly polarized waves,
viz. equation (26). If it is assumed that in the vicinity of
the cyclotron frequency that the dispersion relation will
be of the form, ω2 = ω2

c + β1ω
2
p + ..., where β1 = O(1),

then the condition that such terms as the last term in
equation (37) can be neglected is z∗ � ω2

p/ω
2
c , placing a

constraint on the size of the wavenumber q.
The constraint on the wavenumber does not mean,

however, that q must always be small. For a magnetic
field of the 105 G, though much stronger fields are dis-
cussed in relation to high temperature superconductors
in reference [10], one obtains a cyclotron frequency of
1.8 × 1012 rad s−1, which means for a plasma frequency
of 1011 rad s−1 that ω2

p/ω
2
c = 1/324. Then the condition

on z∗ means that q2 � 1.4× 105 cm−1. Thus, corrections
involving z∗ in equation (37) will generally be extremely
small and can be neglected.
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To zeroth order order in z∗, equation (37) reduces to

q2c2ω2
(
ω2

c − ω
2 + ω2

p

)
=

=
(
ω2 − ω2

p

) (
ω2ω2

c − ω
4 + ω2

pω
2 + ω2

pω
2
c

)
. (38)

The solutions to this equation can be obtained by car-
rying out a perturbational analysis around the solutions
obtained by setting the lhs equal to zero. Although all
solutions for ω2 are real, one is negatively real, which, in
turn, means that ω is imaginary. This branch is neglected.
The two remaining solutions for ω2 are then perturbed
around ω2 = ω2

c and ω2 = ω2
p. For large |ωc|, the solution

corresponding to close to the cyclotron frequency is given
by

ω2 ≈ ω2
c + ω2

p (1 + β0)−
ω4

p(1 + β2
0)

(ω2
c − q

2c2)
+ · · · , (39)

where β0 = ω2
c/(ω

2
c − q

2c2) and ω2
p � ω2

c . Close to the
plasma frequency equation (16) yields

ω2 ≈ ω2
p +

q2c2

2 + q2c2
(
ω−2

c − ω−2
p

) + · · · , (40)

which has been obtained under the condition that q2c2 �
ω2

p.
Resonances for the extraordinary mode occur when-

ever qc/ω is infinite, which in turn means that ε1(q, ω) = 0.
There is no need to solve this equation directly because un-
der resonance conditions ε1(q, ω) equals the longitudinal
dielectric response function with qz set equal to zero. Thus
resonance conditions correspond to solving the longitudi-
nal dielectric response function set equal to zero, which
we have seen already yields the dispersion relation for
Bernstein mode near the cyclotron frequency, viz. equa-
tion (10).

Cut-off frequencies are determined by setting the lhs
of equation (38) equal to zero. When this is done, two
frequencies are found: the first cut-off frequency occurring
not unexpectedly at ω2 = ω2

p while the second or upper
cut-off frequency occurs at

ω2 =
1

2

(
ω2

c + ω2
p

)
+

1

2

√(
ω2

c + ω2
p

)2
+ 4ω2

pω
2
c . (41)

An extraordinary mode will only propagate if its fre-
quency is greater than the plasma frequency. On the other
hand, for ω2

p � ω2
c , the upper cut-off frequency corre-

sponds to ω2 ≈ ω2
c + 2ω2

p. Extraordinary modes will only
propagate between the two cut-off frequencies with the
greatest absorption by the medium of these modes oc-
curring at the Bernstein mode given by equation (12) in
reference [4].

4 Conclusion

In this paper we have presented a summary of the main
dielectric properties of an ultra-cold strongly magnetized

CBG. In particular, we have given the dispersion relations
for longitudinal modes propagating parallel to the mag-
netic field, the so-called plasmon modes given by equation
(1), and for those propagating perpendicular to the mag-
netic field, which are known as Bernstein modes. Bernstein
modes arise near the the cyclotron frequency as given by
equation (10) or close to harmonics of this frequency such
as equations (11, 12). In addition, the general anisotropic
case for longitudinal modes has been studied, which rep-
resents a hybrid mode as given by equation (16).

The dispersion relations for tranverse modes propagat-
ing both parallel and perpendicular to the magnetic field
have also been presented. The dispersion relations for cir-
cularly polarized modes are given by equation (25) with
the solution near the cyclotron frequency given by equa-
tion (26). Left circularly polarized modes were found to
exhibit resonance at ω = ωc + h̄q2/2m while their cut-
off frequency is given by equation (28). The dispersion
relations for extraordinary modes near the cyclotron fre-
quency and near the plasma frequency are given by equa-
tions (39, 40) respectively. The resonance condition for
this hybrid mode was found to be given by the dispersion
relation for the Bernstein mode near the cyclotron fre-
quency, i.e., equation (10), while the cut-off frequencies
were found to occur at the plasma frequency and at the
higher frequency given by equation (41).

A more detailed study incorporating numerical analy-
ses of these results is currently being carried out. It should
also be mentioned that the novel asymptotic expansion
for S(α, x) given here can also be applied to evaluate the
strong magnetic field behaviour for an even more impor-
tant fundamental system of condensed matter, the magne-
tized degenerate electron gas. This study, too, is currently
underway.

The author acknowledges the support of an Australian Re-
search Fellowship.
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